Z = 4

Mo $K\alpha$ radiation

 $0.45 \times 0.38 \times 0.36$ mm

 $\mu = 3.54 \text{ mm}^{-1}$

T = 298 K

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Bromo-4-chloro-6-[(E)-(2-chlorophenyl)iminomethyl]phenol

Xinli Zhang

Department of Chemistry, Baoji University of Arts and Science, Baoji, Shaanxi 721007, People's Republic of China Correspondence e-mail: zhangxinli6008@163.com

Received 20 February 2009; accepted 26 February 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.032; wR factor = 0.077; data-to-parameter ratio = 14.0.

The title compound, C₁₃H₈BrCl₂NO, was obtained by reaction of 3-bromo-5-chlorosalicylaldehyde and 2-chlorobenzenamine in methanol. The molecule displays an *E* configuration with respect to the imine C=N double bond. The dihedral angle between the two benzene rings is $4.57 (11)^{\circ}$. The molecular conformation is stabilized by an intramolecular O-H···N hydrogen bond. In the crystal structure, molecules are linked by intermolecular $C-H \cdots O$ hydrogen-bonding interactions into zigzag chains running parallel to the b axis. Intermolecular Br···Cl [3.5289 (11) Å] and Cl···Cl [3.5042 (12) Å] interactions are present.

Related literature

For the biological activities of Schiff base complexes, see: Cukurovali et al. (2002); Tarafder et al. (2002); Ali et al. (2002). For halogen-halogen interactions, see: Saruma et al. (1986); Moorthy et al. (2002).

Experimental

Crystal data C13H8BrCl2NO

 $M_r = 345.01$

Monoclinic, $P2_1/c$	
a = 8.4299 (10) Å	
b = 14.0115 (16) Å	
c = 11.4194 (14) Å	
$\beta = 104.5120 \ (10)^{\circ}$	
V = 1305.8 (3) Å ³	

Data collection

Siemens SMART CCD area-	6450 measured reflections
detector diffractometer	2295 independent reflections
Absorption correction: multi-scan	1726 reflections with $I > 2\sigma(I)$
(SADABS; Siemens, 1996)	$R_{\rm int} = 0.038$
$T_{\min} = 0.230, \ T_{\max} = 0.279$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	164 parameters
$wR(F^2) = 0.077$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
2295 reflections	$\Delta \rho_{\rm min} = -0.58 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1−H1···N1	0.82	1.86	2.586 (3)	147
$C11-H11\cdots O1^{i}$	0.93	2.56	3.324 (5)	139

Symmetry code: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The author gratefully acknowledge financial support for research project No. 08JZ09 from the Phytochemistry Key Laboratory of Shaanxi Province.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2298).

References

- Ali, M. A., Mirza, A. H., Butcher, R. J. & Tarafder, M. T. H. (2002). Inorg. Biochem. 92, 141-148.
- Cukurovali, A., Yilmaz, I., Ozmen, H. & Ahmedzade, M. (2002). Transition Met. Chem. 27, 171-176.
- Moorthy, J. N., Natarajan, R., Mal, P. & Venugopalan, P. (2002). J. Am. Chem. Soc. 124, 6530-6531.
- Saruma, J. A. R. & Desiraju, G. R. (1986). Acc. Chem. Res. 19, 222-228.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M. & Yamin, B. M. (2002). Polyhedron, 21, 2547-2554.

supplementary materials

Acta Cryst. (2009). E65, o667 [doi:10.1107/S1600536809007181]

2-Bromo-4-chloro-6-[(E)-(2-chlorophenyl)iminomethyl]phenol

X. Zhang

Comment

Schiff base complexes are of great interests for inorganic and bioinorganic chemistry. To the best of our knowledge, in the past two decades Schiff base ligands have demonstrated significant biological activities and new examples have been tested for their antitumor, antimicrobial and antiviral activities (Tarafder *et al.*, 2002; Cukurovali *et al.*, 2002; Ali *et al.*, 2002). As an extension of the work on the structural characterization of Schiff base compounds, the crystal structure of the title compound is reported here.

The molecular structure and crystal packing of the title compound are illustrated in Fig. 1 and 2, respectively. The C1=N1 bond distance (1.279 (4) Å) is shorter than expected. The molecule is not strictly planar, the maximum deviations from the planarity are 0.199 (5) and 0.162 (5) for atoms Cl1 and Cl2. The dihedral angle formed by the benzene rings is 4.57 (11)°. The molecular conformation is stabilized by an intramolecular O—H···N hydrogen bond (Table 1). In the crystal packing, the molecules are linked via intermolecular C—H···O hydrogen bonds into zig-zag chains running parallel to the *b* axis. In addition, intermolecular Br···Cl and Cl···Cl interactions are observed (Fig. 2) falling in the typical range of halogen-halogen interactions (Saruma & Desiraju, 1986, Moorthy *et al.*, 2002): Br1···Cl1ⁱ = 3.5289 (11) Å; Cl1···Cl2ⁱⁱ = 3.5042 (12) Å; symmetry codes: (i) x, 3/2-y, -1/2+z; (ii) 1+x, y, 1+z.

Experimental

3-Bromo-5-chlorosalicylaldehyde(0.1 mmol, 23.6 mg) and 2-chlorobenzenamine (0.1 mmol, 12.8 mg) were dissolved in methanol (10 ml). The mixture was stirred at room temperature for 1 h and then filtered. After allowing the filtrate to stand in air for 7 d, yellow block-shaped crystals of the title compound were formed by slow evaporation of the solvent. The crystals were collected, washed with methanol and dried in a vacuum desiccator using anhydrous CaCl₂ (yield 52%).

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å, O—H = 0.82 Å and $U_{iso}(H) = 1.2 U_{eq}(C, O)$.

Figures

Fig. 1. The structure of the title compound with 30% probability ellipsoids. H atoms are shown as spheres of arbitrary radii. The dashed line represents a hydrogen bond.

Fig. 2. The crystal packing of the title compound viewed along the a axis. Halogen-halogen interactions are shown as dashed lines.

2-Bromo-4-chloro-6-[(E)-(2-chlorophenyl)iminomethyl]phenol

Crystal data	
C ₁₃ H ₈ BrCl ₂ NO	$F_{000} = 680$
$M_r = 345.01$	$D_{\rm x} = 1.755 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2353 reflections
<i>a</i> = 8.4299 (10) Å	$\theta = 2.4 - 25.2^{\circ}$
<i>b</i> = 14.0115 (16) Å	$\mu = 3.54 \text{ mm}^{-1}$
c = 11.4194 (14) Å	T = 298 K
$\beta = 104.5120 \ (10)^{\circ}$	Block, yellow
$V = 1305.8 (3) \text{ Å}^3$	$0.45\times0.38\times0.36~mm$
Z = 4	

Data collection

Siemens SMART CCD area-detector diffractometer	2295 independent reflections
Radiation source: fine-focus sealed tube	1726 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.038$
T = 298 K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: multi-scan (SADABS; Siemens, 1996)	$h = -10 \rightarrow 9$
$T_{\min} = 0.230, \ T_{\max} = 0.279$	$k = -14 \rightarrow 16$
6450 measured reflections	<i>l</i> = −13→13

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.032$	$w = 1/[\sigma^2(F_0^2) + (0.0256P)^2 + 0.9771P]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.077$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.03	$\Delta \rho_{max} = 0.39 \text{ e} \text{ Å}^{-3}$

2295 reflections

164 parameters

$$\begin{split} &\Delta \rho_{min} = -0.57 \text{ e } \text{\AA}^{-3} \\ &\text{Extinction correction: SHELXL97 (Sheldrick, 2008),} \\ &\text{Fc}^* = \text{kFc}[1 + 0.001 \text{xFc}^2 \lambda^3 / \sin(2\theta)]^{-1/4} \end{split}$$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Br1 0.54350 (5) 0.75675 (2) 0.54203 (4) 0.06096 (18) Cl1 0.70198 (11) 0.53128 (7) 0.95100 (8) 0.0596 (3) Cl2 -0.01427 (12) 0.49417 (8) 0.22925 (8) 0.0767 (3) N1 0.1581 (3) 0.43674 (18) 0.4723 (2) 0.0434 (7) O1 0.3040 (3) 0.59685 (15) 0.45663 (19) 0.0500 (6) H1 0.2386 0.5532 0.4344 0.075* C1 0.2481 (4) 0.4266 (2) 0.5798 (3) 0.0436 (8) H1A 0.2359 0.3725 0.6238 0.052* C2 0.3687 (4) 0.4978 (2) 0.5464 (3) 0.0381 (7) C3 0.3916 (4) 0.5800 (2) 0.5697 (3) 0.0387 (7) C4 0.5108 (4) 0.6305 (2) 0.7418 (3) 0.0420 (8) C5 0.6058 (4) 0.6305 (2) 0.7418 (3) 0.0453 (8) C7 0.4644 (4) 0.4349 (2) 0.7500 (3) 0.0453 (8) C7 0.4644 (4) 0.4396 (3)		x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Cl1 $0.70198(11)$ $0.53128(7)$ $0.95100(8)$ $0.0596(3)$ Cl2 $-0.01427(12)$ $0.49417(8)$ $0.22925(8)$ $0.0767(3)$ N1 $0.1581(3)$ $0.43674(18)$ $0.4723(2)$ $0.0434(7)$ O1 $0.3040(3)$ $0.59685(15)$ $0.45663(19)$ $0.0500(6)$ H1 0.2386 0.5532 0.4344 $0.075*$ C1 $0.2481(4)$ $0.4266(2)$ $0.5798(3)$ $0.0436(8)$ H1A 0.2359 0.3725 0.6238 $0.052*$ C2 $0.3687(4)$ $0.4978(2)$ $0.6346(3)$ $0.0381(7)$ C3 $0.3916(4)$ $0.5800(2)$ $0.5697(3)$ $0.0387(7)$ C4 $0.5108(4)$ $0.6456(2)$ $0.6259(3)$ $0.0420(8)$ C5 $0.6058(4)$ $0.6305(2)$ $0.7418(3)$ $0.0461(8)$ H5 0.6860 0.6744 0.7777 $0.055*$ C6 $0.5809(4)$ $0.5499(2)$ $0.8042(3)$ $0.0435(8)$ C7 $0.4644(4)$ $0.4838(2)$ $0.7520(3)$ $0.0435(8)$ H7 0.4492 0.4296 0.7950 $0.052*$ C8 $0.0439(4)$ $0.3675(2)$ $0.4143(3)$ $0.0457(8)$ C9 $-0.0435(4)$ $0.3866(3)$ $0.2963(3)$ $0.0528(9)$ C10 $-0.1548(5)$ $0.3222(4)$ $0.2313(4)$ $0.0711(13)$ H10 -0.2122 0.3362 0.1524 $0.89*$ C11 $-0.1804(5)$ $0.2369(3)$ $0.2839(5)$ $0.0814(14)$ H11 -0.2550 0.1931 0.2403 <td< td=""><td>Br1</td><td>0.54350 (5)</td><td>0.75675 (2)</td><td>0.54203 (4)</td><td>0.06096 (18)</td></td<>	Br1	0.54350 (5)	0.75675 (2)	0.54203 (4)	0.06096 (18)
Cl2-0.01427 (12)0.49417 (8)0.22925 (8)0.0767 (3)N10.1581 (3)0.43674 (18)0.4723 (2)0.0434 (7)O10.3040 (3)0.59685 (15)0.45663 (19)0.0500 (6)H10.23860.55320.43440.075*C10.2481 (4)0.4266 (2)0.5798 (3)0.0436 (8)H1A0.23590.37250.62380.052*C20.3687 (4)0.4978 (2)0.6346 (3)0.0381 (7)C30.3916 (4)0.5800 (2)0.5697 (3)0.0387 (7)C40.5108 (4)0.6456 (2)0.6259 (3)0.0420 (8)C50.6058 (4)0.6305 (2)0.7418 (3)0.0461 (8)H50.66600.67440.77770.055*C60.5809 (4)0.5499 (2)0.8042 (3)0.0435 (8)C70.4644 (4)0.4838 (2)0.7520 (3)0.0457 (8)C80.0439 (4)0.3675 (2)0.4143 (3)0.0457 (8)C9-0.0435 (4)0.3222 (4)0.2313 (4)0.0711 (13)H10-0.21220.33620.15240.089*C11-0.1804 (5)0.2369 (3)0.2839 (5)0.0814 (14)H11-0.25500.19310.24030.098*C12-0.0967 (5)0.2165 (3)0.3997 (5)0.0751 (12)H12-0.11450.5818 (3)0.4650 (4)0.6622 (10)H130.07110.26770.54400.075*	C11	0.70198 (11)	0.53128 (7)	0.95100 (8)	0.0596 (3)
N10.1581 (3)0.43674 (18)0.4723 (2)0.0434 (7)O10.3040 (3)0.59685 (15)0.45663 (19)0.0500 (6)H10.23860.55320.43440.075*C10.2481 (4)0.4266 (2)0.5798 (3)0.0436 (8)H1A0.23590.37250.62380.052*C20.3687 (4)0.4978 (2)0.6346 (3)0.0381 (7)C30.3916 (4)0.5800 (2)0.5697 (3)0.0426 (8)C40.5108 (4)0.6456 (2)0.6259 (3)0.0420 (8)C50.6058 (4)0.6305 (2)0.7418 (3)0.0461 (8)H50.66600.67440.77770.055*C60.5809 (4)0.5499 (2)0.8042 (3)0.0436 (8)H70.44920.42960.79500.052*C80.0439 (4)0.3675 (2)0.4143 (3)0.0457 (8)C9-0.0435 (4)0.33620.15240.089*C11-0.1548 (5)0.3222 (4)0.2313 (4)0.0741 (13)H10-0.21220.33620.15240.089*C11-0.1804 (5)0.2369 (3)0.2839 (5)0.0814 (14)H11-0.25500.19310.24030.098*C12-0.0967 (5)0.2165 (3)0.3997 (5)0.0751 (12)H12-0.11450.15890.43490.090*C130.0149 (5)0.2818 (3)0.4650 (4)0.6222 (10)	C12	-0.01427 (12)	0.49417 (8)	0.22925 (8)	0.0767 (3)
O10.3040 (3)0.59685 (15)0.45663 (19)0.0500 (6)H10.23860.55320.43440.075*C10.2481 (4)0.4266 (2)0.5798 (3)0.0436 (8)H1A0.23590.37250.62380.052*C20.3687 (4)0.4978 (2)0.6346 (3)0.0381 (7)C30.3916 (4)0.5800 (2)0.5697 (3)0.0387 (7)C40.5108 (4)0.6456 (2)0.6259 (3)0.0420 (8)C50.6058 (4)0.6305 (2)0.7418 (3)0.0461 (8)H50.668600.67440.77770.055*C60.5809 (4)0.5499 (2)0.8042 (3)0.0435 (8)C70.4644 (4)0.4838 (2)0.7520 (3)0.0435 (8)H70.44920.42960.79500.052*C80.0439 (4)0.3675 (2)0.4143 (3)0.0457 (8)C9-0.0435 (4)0.3222 (4)0.2313 (4)0.0741 (13)H10-0.21220.33620.15240.089*C11-0.1804 (5)0.2369 (3)0.2839 (5)0.0814 (14)H11-0.25500.19310.24030.098*C12-0.0967 (5)0.2165 (3)0.3997 (5)0.0751 (12)H12-0.11450.15890.43490.090*C130.0149 (5)0.2818 (3)0.4650 (4)0.622 (10)H130.07110.26770.54400.075*	N1	0.1581 (3)	0.43674 (18)	0.4723 (2)	0.0434 (7)
H10.23860.55320.43440.075*C10.2481 (4)0.4266 (2)0.5798 (3)0.0436 (8)H1A0.23590.37250.62380.052*C20.3687 (4)0.4978 (2)0.6346 (3)0.0381 (7)C30.3916 (4)0.5800 (2)0.5697 (3)0.0387 (7)C40.5108 (4)0.6456 (2)0.6259 (3)0.0420 (8)C50.6058 (4)0.6305 (2)0.7418 (3)0.0461 (8)H50.68600.67440.77770.055*C60.5809 (4)0.5499 (2)0.8042 (3)0.0435 (8)C70.4644 (4)0.4838 (2)0.7520 (3)0.0435 (8)H70.44920.42960.79500.052*C80.0439 (4)0.3675 (2)0.4143 (3)0.0457 (8)C9-0.0435 (4)0.3866 (3)0.2963 (3)0.0528 (9)C10-0.1548 (5)0.3222 (4)0.2313 (4)0.0741 (13)H10-0.21220.33620.15240.089*C11-0.1804 (5)0.2369 (3)0.2839 (5)0.814 (14)H11-0.25500.19310.24030.098*C12-0.0967 (5)0.2165 (3)0.3997 (5)0.0751 (12)H12-0.11450.5818 (3)0.4650 (4)0.6022 (10)H130.07110.26770.54400.075*	01	0.3040 (3)	0.59685 (15)	0.45663 (19)	0.0500 (6)
C1 $0.2481(4)$ $0.4266(2)$ $0.5798(3)$ $0.0436(8)$ H1A 0.2359 0.3725 0.6238 $0.052*$ C2 $0.3687(4)$ $0.4978(2)$ $0.6346(3)$ $0.0381(7)$ C3 $0.3916(4)$ $0.5800(2)$ $0.6259(3)$ $0.0420(8)$ C4 $0.5108(4)$ $0.6456(2)$ $0.6259(3)$ $0.0420(8)$ C5 $0.6058(4)$ $0.6305(2)$ $0.7418(3)$ $0.0461(8)$ H5 0.6860 0.6744 0.7777 $0.055*$ C6 $0.5809(4)$ $0.5499(2)$ $0.8042(3)$ $0.0435(8)$ C7 $0.4644(4)$ $0.4838(2)$ $0.7520(3)$ $0.0435(8)$ H7 0.4492 0.4296 0.7950 $0.052*$ C8 $0.0439(4)$ $0.3675(2)$ $0.4143(3)$ $0.0457(8)$ C9 $-0.0435(4)$ $0.3222(4)$ $0.2313(4)$ $0.0741(13)$ H10 -0.2122 0.3362 0.1524 $0.089*$ C11 $-0.1804(5)$ $0.2369(3)$ $0.2839(5)$ $0.0814(14)$ H11 -0.2550 0.1931 0.2403 $0.098*$ C12 $-0.0967(5)$ $0.2165(3)$ $0.3997(5)$ $0.0751(12)$ H12 -0.1145 $0.5818(3)$ $0.4650(4)$ $0.0622(10)$ H13 0.0711 0.2677 0.5440 $0.075*$	H1	0.2386	0.5532	0.4344	0.075*
H1A0.23590.37250.62380.052*C20.3687 (4)0.4978 (2)0.6346 (3)0.0381 (7)C30.3916 (4)0.5800 (2)0.5697 (3)0.0387 (7)C40.5108 (4)0.6456 (2)0.6259 (3)0.0420 (8)C50.6058 (4)0.6305 (2)0.7418 (3)0.0461 (8)H50.68600.67440.77770.055*C60.5809 (4)0.5499 (2)0.8042 (3)0.0435 (8)C70.4644 (4)0.4838 (2)0.7520 (3)0.0436 (8)H70.44920.42960.79500.052*C80.0439 (4)0.3675 (2)0.4143 (3)0.0457 (8)C9-0.0435 (4)0.3866 (3)0.2963 (3)0.0528 (9)C10-0.1548 (5)0.3222 (4)0.2313 (4)0.0711 (13)H10-0.21220.33620.15240.089*C11-0.1804 (5)0.2369 (3)0.2839 (5)0.0814 (14)H11-0.25500.19310.24030.098*C12-0.0967 (5)0.2165 (3)0.3997 (5)0.0751 (12)H12-0.11450.15890.43490.090*C130.0149 (5)0.2818 (3)0.4650 (4)0.0622 (10)H130.07110.26770.54400.075*	C1	0.2481 (4)	0.4266 (2)	0.5798 (3)	0.0436 (8)
C2 $0.3687 (4)$ $0.4978 (2)$ $0.6346 (3)$ $0.0381 (7)$ C3 $0.3916 (4)$ $0.5800 (2)$ $0.5697 (3)$ $0.0387 (7)$ C4 $0.5108 (4)$ $0.6456 (2)$ $0.6259 (3)$ $0.0420 (8)$ C5 $0.6058 (4)$ $0.6305 (2)$ $0.7418 (3)$ $0.0461 (8)$ H5 0.6860 0.6744 0.7777 0.055^* C6 $0.5809 (4)$ $0.5499 (2)$ $0.8042 (3)$ $0.0435 (8)$ C7 $0.4644 (4)$ $0.4838 (2)$ $0.7520 (3)$ $0.0436 (8)$ H7 0.4492 0.4296 0.7950 0.052^* C8 $0.0439 (4)$ $0.3675 (2)$ $0.4143 (3)$ $0.0457 (8)$ C9 $-0.0435 (4)$ $0.3866 (3)$ $0.2963 (3)$ $0.0528 (9)$ C10 $-0.1548 (5)$ $0.3222 (4)$ $0.2313 (4)$ $0.0741 (13)$ H10 -0.2122 0.3362 0.1524 0.089^* C11 $-0.1804 (5)$ $0.2369 (3)$ $0.2839 (5)$ $0.0814 (14)$ H11 -0.2550 0.1931 0.2403 0.098^* C12 $-0.0967 (5)$ $0.2165 (3)$ $0.3997 (5)$ $0.0751 (12)$ H12 -0.1145 0.1589 0.4349 0.090^* C13 $0.0149 (5)$ $0.2818 (3)$ $0.4650 (4)$ $0.0622 (10)$ H13 0.0711 0.2677 0.5440 0.075^*	H1A	0.2359	0.3725	0.6238	0.052*
C30.3916 (4)0.5800 (2)0.5697 (3)0.0387 (7)C40.5108 (4)0.6456 (2)0.6259 (3)0.0420 (8)C50.6058 (4)0.6305 (2)0.7418 (3)0.0461 (8)H50.68600.67440.77770.055*C60.5809 (4)0.5499 (2)0.8042 (3)0.0435 (8)C70.4644 (4)0.4838 (2)0.7520 (3)0.0436 (8)H70.44920.42960.79500.052*C80.0439 (4)0.3675 (2)0.4143 (3)0.0457 (8)C9-0.0435 (4)0.3866 (3)0.2963 (3)0.0528 (9)C10-0.1548 (5)0.3222 (4)0.2313 (4)0.0741 (13)H10-0.21220.33620.15240.089*C11-0.1804 (5)0.2369 (3)0.2839 (5)0.0814 (14)H11-0.25500.19310.24030.098*C12-0.0967 (5)0.2165 (3)0.3997 (5)0.0751 (12)H12-0.11450.15890.43490.090*C130.0149 (5)0.2818 (3)0.4650 (4)0.0622 (10)H130.07110.26770.54400.075*	C2	0.3687 (4)	0.4978 (2)	0.6346 (3)	0.0381 (7)
C40.5108 (4)0.6456 (2)0.6259 (3)0.0420 (8)C50.6058 (4)0.6305 (2)0.7418 (3)0.0461 (8)H50.68600.67440.77770.055*C60.5809 (4)0.5499 (2)0.8042 (3)0.0433 (8)C70.4644 (4)0.4838 (2)0.7520 (3)0.0436 (8)H70.44920.42960.79500.052*C80.0439 (4)0.3675 (2)0.4143 (3)0.0457 (8)C9-0.0435 (4)0.3866 (3)0.2963 (3)0.0528 (9)C10-0.1548 (5)0.3222 (4)0.2313 (4)0.0741 (13)H10-0.21220.33620.15240.089*C11-0.1804 (5)0.2369 (3)0.2839 (5)0.0814 (14)H11-0.25500.19310.24030.098*C12-0.0967 (5)0.2165 (3)0.3997 (5)0.0751 (12)H12-0.11450.15890.43490.090*C130.0149 (5)0.2818 (3)0.4650 (4)0.0622 (10)H130.07110.26770.54400.075*	C3	0.3916 (4)	0.5800 (2)	0.5697 (3)	0.0387 (7)
C50.6058 (4)0.6305 (2)0.7418 (3)0.0461 (8)H50.68600.67440.77770.055*C60.5809 (4)0.5499 (2)0.8042 (3)0.0453 (8)C70.4644 (4)0.4838 (2)0.7520 (3)0.0436 (8)H70.44920.42960.79500.052*C80.0439 (4)0.3675 (2)0.4143 (3)0.0457 (8)C9-0.0435 (4)0.3866 (3)0.2963 (3)0.0528 (9)C10-0.1548 (5)0.3222 (4)0.2313 (4)0.0741 (13)H10-0.21220.33620.15240.089*C11-0.1804 (5)0.2369 (3)0.2839 (5)0.0814 (14)H11-0.25500.19310.24030.098*C12-0.0967 (5)0.2165 (3)0.3997 (5)0.0751 (12)H12-0.11450.15890.43490.090*C130.0149 (5)0.2818 (3)0.4650 (4)0.0622 (10)H130.07110.26770.54400.075*	C4	0.5108 (4)	0.6456 (2)	0.6259 (3)	0.0420 (8)
H50.68600.67440.77770.055*C60.5809 (4)0.5499 (2)0.8042 (3)0.0453 (8)C70.4644 (4)0.4838 (2)0.7520 (3)0.0436 (8)H70.44920.42960.79500.052*C80.0439 (4)0.3675 (2)0.4143 (3)0.0457 (8)C9-0.0435 (4)0.3866 (3)0.2963 (3)0.0528 (9)C10-0.1548 (5)0.3222 (4)0.2313 (4)0.0741 (13)H10-0.21220.33620.15240.089*C11-0.1804 (5)0.2369 (3)0.2839 (5)0.0814 (14)H11-0.25500.19310.24030.098*C12-0.0967 (5)0.2165 (3)0.3997 (5)0.0751 (12)H12-0.11450.15890.43490.090*C130.07110.26770.54400.075*	C5	0.6058 (4)	0.6305 (2)	0.7418 (3)	0.0461 (8)
C60.5809 (4)0.5499 (2)0.8042 (3)0.0453 (8)C70.4644 (4)0.4838 (2)0.7520 (3)0.0436 (8)H70.44920.42960.79500.052*C80.0439 (4)0.3675 (2)0.4143 (3)0.0457 (8)C9-0.0435 (4)0.3866 (3)0.2963 (3)0.0528 (9)C10-0.1548 (5)0.3222 (4)0.2313 (4)0.0741 (13)H10-0.21220.33620.15240.089*C11-0.1804 (5)0.2369 (3)0.2839 (5)0.0814 (14)H11-0.25500.19310.24030.098*C12-0.0967 (5)0.2165 (3)0.3997 (5)0.0751 (12)H12-0.11450.15890.43490.090*C130.07110.26770.54400.075*	Н5	0.6860	0.6744	0.7777	0.055*
C70.4644 (4)0.4838 (2)0.7520 (3)0.0436 (8)H70.44920.42960.79500.052*C80.0439 (4)0.3675 (2)0.4143 (3)0.0457 (8)C9-0.0435 (4)0.3866 (3)0.2963 (3)0.0528 (9)C10-0.1548 (5)0.3222 (4)0.2313 (4)0.0741 (13)H10-0.21220.33620.15240.089*C11-0.1804 (5)0.2369 (3)0.2839 (5)0.0814 (14)H11-0.25500.19310.24030.098*C12-0.0967 (5)0.2165 (3)0.3997 (5)0.0751 (12)H12-0.11450.15890.43490.090*C130.07110.26770.54400.075*	C6	0.5809 (4)	0.5499 (2)	0.8042 (3)	0.0453 (8)
H70.44920.42960.79500.052*C80.0439 (4)0.3675 (2)0.4143 (3)0.0457 (8)C9-0.0435 (4)0.3866 (3)0.2963 (3)0.0528 (9)C10-0.1548 (5)0.3222 (4)0.2313 (4)0.0741 (13)H10-0.21220.33620.15240.089*C11-0.1804 (5)0.2369 (3)0.2839 (5)0.0814 (14)H11-0.25500.19310.24030.098*C12-0.0967 (5)0.2165 (3)0.3997 (5)0.0751 (12)H12-0.11450.15890.43490.090*C130.07110.26770.54400.075*	C7	0.4644 (4)	0.4838 (2)	0.7520 (3)	0.0436 (8)
C8 $0.0439 (4)$ $0.3675 (2)$ $0.4143 (3)$ $0.0457 (8)$ C9 $-0.0435 (4)$ $0.3866 (3)$ $0.2963 (3)$ $0.0528 (9)$ C10 $-0.1548 (5)$ $0.3222 (4)$ $0.2313 (4)$ $0.0741 (13)$ H10 -0.2122 0.3362 0.1524 $0.089*$ C11 $-0.1804 (5)$ $0.2369 (3)$ $0.2839 (5)$ $0.0814 (14)$ H11 -0.2550 0.1931 0.2403 $0.098*$ C12 $-0.0967 (5)$ $0.2165 (3)$ $0.3997 (5)$ $0.0751 (12)$ H12 -0.1145 0.1589 0.4349 $0.090*$ C13 0.0711 0.2677 0.5440 $0.075*$	H7	0.4492	0.4296	0.7950	0.052*
C9-0.0435 (4)0.3866 (3)0.2963 (3)0.0528 (9)C10-0.1548 (5)0.3222 (4)0.2313 (4)0.0741 (13)H10-0.21220.33620.15240.089*C11-0.1804 (5)0.2369 (3)0.2839 (5)0.0814 (14)H11-0.25500.19310.24030.098*C12-0.0967 (5)0.2165 (3)0.3997 (5)0.0751 (12)H12-0.11450.15890.43490.090*C130.0149 (5)0.2818 (3)0.4650 (4)0.0622 (10)H130.07110.26770.54400.075*	C8	0.0439 (4)	0.3675 (2)	0.4143 (3)	0.0457 (8)
C10-0.1548 (5)0.3222 (4)0.2313 (4)0.0741 (13)H10-0.21220.33620.15240.089*C11-0.1804 (5)0.2369 (3)0.2839 (5)0.0814 (14)H11-0.25500.19310.24030.098*C12-0.0967 (5)0.2165 (3)0.3997 (5)0.0751 (12)H12-0.11450.15890.43490.090*C130.0149 (5)0.2818 (3)0.4650 (4)0.0622 (10)H130.07110.26770.54400.075*	C9	-0.0435 (4)	0.3866 (3)	0.2963 (3)	0.0528 (9)
H10-0.21220.33620.15240.089*C11-0.1804 (5)0.2369 (3)0.2839 (5)0.0814 (14)H11-0.25500.19310.24030.098*C12-0.0967 (5)0.2165 (3)0.3997 (5)0.0751 (12)H12-0.11450.15890.43490.090*C130.0149 (5)0.2818 (3)0.4650 (4)0.0622 (10)H130.07110.26770.54400.075*	C10	-0.1548 (5)	0.3222 (4)	0.2313 (4)	0.0741 (13)
C11-0.1804 (5)0.2369 (3)0.2839 (5)0.0814 (14)H11-0.25500.19310.24030.098*C12-0.0967 (5)0.2165 (3)0.3997 (5)0.0751 (12)H12-0.11450.15890.43490.090*C130.0149 (5)0.2818 (3)0.4650 (4)0.0622 (10)H130.07110.26770.54400.075*	H10	-0.2122	0.3362	0.1524	0.089*
H11-0.25500.19310.24030.098*C12-0.0967 (5)0.2165 (3)0.3997 (5)0.0751 (12)H12-0.11450.15890.43490.090*C130.0149 (5)0.2818 (3)0.4650 (4)0.0622 (10)H130.07110.26770.54400.075*	C11	-0.1804 (5)	0.2369 (3)	0.2839 (5)	0.0814 (14)
C12-0.0967 (5)0.2165 (3)0.3997 (5)0.0751 (12)H12-0.11450.15890.43490.090*C130.0149 (5)0.2818 (3)0.4650 (4)0.0622 (10)H130.07110.26770.54400.075*	H11	-0.2550	0.1931	0.2403	0.098*
H12-0.11450.15890.43490.090*C130.0149 (5)0.2818 (3)0.4650 (4)0.0622 (10)H130.07110.26770.54400.075*	C12	-0.0967 (5)	0.2165 (3)	0.3997 (5)	0.0751 (12)
C130.0149 (5)0.2818 (3)0.4650 (4)0.0622 (10)H130.07110.26770.54400.075*	H12	-0.1145	0.1589	0.4349	0.090*
H13 0.0711 0.2677 0.5440 0.075*	C13	0.0149 (5)	0.2818 (3)	0.4650 (4)	0.0622 (10)
	H13	0.0711	0.2677	0.5440	0.075*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0721 (3)	0.0385 (2)	0.0755 (3)	-0.00233 (18)	0.0246 (2)	0.00929 (18)
Cl1	0.0696 (6)	0.0611 (6)	0.0377 (5)	0.0104 (5)	-0.0059 (4)	-0.0064 (4)
Cl2	0.0649 (6)	0.1111 (9)	0.0489 (6)	-0.0086 (6)	0.0043 (5)	0.0204 (6)
N1	0.0443 (15)	0.0433 (15)	0.0400 (16)	-0.0012 (12)	0.0058 (13)	-0.0021 (13)
O1	0.0568 (14)	0.0463 (13)	0.0419 (14)	-0.0019 (11)	0.0033 (11)	0.0102 (11)
C1	0.053 (2)	0.0336 (17)	0.045 (2)	0.0022 (15)	0.0139 (17)	0.0005 (15)
C2	0.0456 (18)	0.0347 (16)	0.0339 (16)	0.0025 (14)	0.0100 (14)	-0.0008 (14)
C3	0.0413 (18)	0.0372 (17)	0.0376 (18)	0.0075 (14)	0.0100 (15)	0.0012 (14)
C4	0.0472 (19)	0.0302 (16)	0.051 (2)	0.0046 (14)	0.0159 (16)	0.0037 (14)
C5	0.0457 (19)	0.0396 (18)	0.051 (2)	0.0001 (15)	0.0078 (17)	-0.0093 (16)
C6	0.052 (2)	0.0444 (19)	0.0365 (18)	0.0114 (16)	0.0050 (15)	-0.0022 (15)
C7	0.056 (2)	0.0365 (17)	0.0375 (18)	0.0046 (16)	0.0096 (16)	0.0017 (15)
C8	0.0420 (18)	0.048 (2)	0.047 (2)	0.0008 (15)	0.0108 (16)	-0.0116 (16)
C9	0.042 (2)	0.073 (2)	0.043 (2)	0.0002 (18)	0.0108 (16)	-0.0120 (18)
C10	0.057 (2)	0.111 (4)	0.052 (2)	-0.013 (2)	0.011 (2)	-0.029 (3)
C11	0.066 (3)	0.088 (3)	0.091 (4)	-0.021 (2)	0.020 (3)	-0.052 (3)
C12	0.073 (3)	0.055 (2)	0.099 (4)	-0.018 (2)	0.023 (3)	-0.022 (3)
C13	0.065 (2)	0.051 (2)	0.065 (3)	-0.0089 (19)	0.006 (2)	-0.0048 (19)

Geometric parameters (Å, °)

Br1—C4	1.885 (3)	С5—Н5	0.9300
Cl1—C6	1.750 (3)	C6—C7	1.373 (5)
Cl2—C9	1.736 (4)	С7—Н7	0.9300
N1—C1	1.279 (4)	C8—C13	1.381 (5)
N1—C8	1.409 (4)	C8—C9	1.390 (5)
O1—C3	1.338 (3)	C9—C10	1.377 (5)
O1—H1	0.8200	C10-C11	1.379 (6)
C1—C2	1.449 (4)	С10—Н10	0.9300
C1—H1A	0.9300	C11—C12	1.364 (7)
C2—C7	1.394 (4)	C11—H11	0.9300
C2—C3	1.409 (4)	C12—C13	1.388 (5)
C3—C4	1.394 (4)	С12—Н12	0.9300
C4—C5	1.381 (4)	С13—Н13	0.9300
C5—C6	1.378 (4)		
C1—N1—C8	123.1 (3)	С6—С7—Н7	120.0
C3—O1—H1	109.5	С2—С7—Н7	120.0
N1—C1—C2	121.4 (3)	C13—C8—C9	117.8 (3)
N1—C1—H1A	119.3	C13—C8—N1	125.0 (3)
C2—C1—H1A	119.3	C9—C8—N1	117.2 (3)
C7—C2—C3	119.9 (3)	C10—C9—C8	121.4 (4)
C7—C2—C1	119.5 (3)	C10-C9-Cl2	118.9 (3)
C3—C2—C1	120.6 (3)	C8—C9—Cl2	119.7 (3)
O1—C3—C4	119.2 (3)	C9—C10—C11	119.5 (4)

O1—C3—C2	122.4 (3)	С9—С10—Н10	120.3
C4—C3—C2	118.3 (3)	С11—С10—Н10	120.3
C5—C4—C3	121.2 (3)	C12—C11—C10	120.3 (4)
C5—C4—Br1	119.4 (2)	C12—C11—H11	119.8
C3—C4—Br1	119.4 (2)	C10-C11-H11	119.8
C6—C5—C4	119.6 (3)	C11—C12—C13	119.9 (4)
С6—С5—Н5	120.2	С11—С12—Н12	120.1
С4—С5—Н5	120.2	C13—C12—H12	120.1
C7—C6—C5	120.9 (3)	C8—C13—C12	121.1 (4)
C7—C6—Cl1	119.8 (3)	C8—C13—H13	119.5
C5—C6—Cl1	119.3 (3)	С12—С13—Н13	119.5
C6—C7—C2	120.1 (3)		
C8—N1—C1—C2	177.5 (3)	Cl1—C6—C7—C2	-179.4 (2)
N1—C1—C2—C7	-179.9 (3)	C3—C2—C7—C6	-0.2 (5)
N1—C1—C2—C3	-0.8 (5)	C1—C2—C7—C6	178.9 (3)
C7—C2—C3—O1	179.6 (3)	C1—N1—C8—C13	0.1 (5)
C1—C2—C3—O1	0.6 (4)	C1—N1—C8—C9	-178.6 (3)
C7—C2—C3—C4	0.0 (4)	C13—C8—C9—C10	-0.4 (5)
C1—C2—C3—C4	-179.1 (3)	N1-C8-C9-C10	178.4 (3)
O1—C3—C4—C5	-179.1 (3)	C13—C8—C9—Cl2	178.9 (3)
C2—C3—C4—C5	0.6 (4)	N1-C8-C9-Cl2	-2.3 (4)
O1—C3—C4—Br1	0.8 (4)	C8—C9—C10—C11	0.0 (6)
C2—C3—C4—Br1	-179.6 (2)	Cl2—C9—C10—C11	-179.3 (3)
C3—C4—C5—C6	-1.0 (5)	C9—C10—C11—C12	0.3 (6)
Br1-C4-C5-C6	179.2 (2)	C10-C11-C12-C13	-0.1 (7)
C4—C5—C6—C7	0.8 (5)	C9—C8—C13—C12	0.6 (6)
C4—C5—C6—Cl1	180.0 (2)	N1-C8-C13-C12	-178.1 (3)
C5—C6—C7—C2	-0.2 (5)	C11—C12—C13—C8	-0.4 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H1…N1	0.82	1.86	2.586 (3)	147
C11—H11···O1 ⁱ	0.93	2.56	3.324 (5)	139
~				

Symmetry codes: (i) -x, y-1/2, -z+1/2.

